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SUMMARY

The e�ects of Coriolis forces to interfacial stabilities on miscible rotating Hele–Shaw �ows are inves-
tigated by means of highly accurate numerical schemes. Two major in�uences on the interfaces, i.e.
the stabilization of circumferential �ngerings and the unstable body distortion of droplets, are observed.
These two phenomena can be represented by two characteristic measurements, i.e. interfacial length and
radius of gyration, respectively. Without an additional injection, the miscible interface is found to be
more stable at higher Coriolis factors, based on both the judgments of growths in interfacial length and
the radius of gyration. However, with an additional injection, a visible body distortion with suppressed
interfacial �ngerings at higher Coriolis factors leads to inconsistent developments in these two charac-
teristic measurements. The stabilized e�ect of interfacial �ngering delays and weakens the growth in
interfacial length at higher Coriolis factors, while faster and greater growth in the radius of gyration is
observed because of the signi�cant body distortion. As a result, the e�ects of the Coriolis forces on the
miscible interfacial instabilities should be addressed with great caution. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The Hele–Shaw �ows driven by centrifugal force have been the subject of recent studies
[1–4] due to their potential applications to the technology of spin-coating, i.e. precious metals
for electronic wafers, or organic solvents for cleaning purposes. In the common practices of
the spin-coating process, a liquid drop is initially deposited on the top of a rotating target
substrate, and is spread outward by centrifugal force [5–8]. Since the coating �lm is ex-
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tremely thin, the approximation by lubrication theory yields to similar physical phenomenon
to Hele–Shaw equations. Thus, the process of spin-coating bears great similarities to a rotat-
ing Hele–Shaw �ow. Based on the Hele–Shaw theory, Schwartz [1] analysed an immiscible
rotating Hele–Shaw �ow by a simpli�ed mathematical model including the e�ects of Corio-
lis forces and reported an independent �ngering pattern in both the liquid viscosity and the
cell spacing. Many breaking drops from the liquid mass have also been observed. Carrillo
et al. [2] investigated the interfacial instabilities of immiscible �uids in a rotating cell both
theoretically, in which Coriolis forces are neglected, and experimentally. Experiments in the
radial displacement of a �uid annulus [3] have shown the strong dependence of instabilities on
the wetting condition of the outer interface. In a dry cell, however, a scaling correlation can
be formed between the capillary number and a dimensionless group that relates to centrifugal
force and capillary force. The follow-up stability analysis [4] showed that the instabilities in
two interfaces, in which the leading interface is density driven and the trailing is driven by
viscosity, are coupled through the pressure �eld. The prediction of stability analysis was con-
�rmed by the experimental results. An interesting emission of liquid droplets at the �ngertip
was observed as well. Simulations of similar �ows in a fully miscible environment that is
relevant to the cleaning of organic solvents are conducted in a reference frame rotating with
the cell [9], in which Coriolis forces are not accounted for, and in an inertia reference frame
by imposing an approximated rotating velocity [10] to analyse the control parameters system-
atically, such as rotating speed, mixing strength, viscosity contrast and injection rate. Without
available experimental data for validation, some interesting comparisons between miscible and
immiscible �ows have been made on the basis of analogy between physical mechanisms of in-
dividual parameters and qualitative observations. Great qualitative similarities in the �ngering
patterns with the experimental results of immiscible situations of little surface tension has been
found. Nevertheless, in contrast to the immiscible situations [1], the e�ects of �nite viscosity
contrast have been found to be signi�cant in miscible simulations even though similar �nger-
ing distortions toward the rotating orientation and the breakup of tiny drops on the �ngertip
have also been found in miscible simulations on the inertia reference frame. Furthermore,
simulations of both immiscible and miscible �ows that account for the Coriolis forces [1, 10]
have caught the experimental phenomena of emission of drops from �ngertips, but distorted
�ngers with rotating orientation have not been shown in the immiscible experiments [2–4].
On the other hand, the zero-Coriolis simulations of miscible �uids [9] have led to �ngering
patterns with great similarities to the immiscible experiments but with no droplet emission.
In addition, a major disagreement exists with regard to whether injection provides a stable
mechanism. More stable interfaces have been obtained by immiscible theoretical analysis [3]
and numerical simulations of miscible cases [9], both excluding the Coriolis forces, if a more
viscous �uid is injected. However, immiscible experiments in real spin-coating with injection
[7] have led to decreases in the critical radius at a high rotating Bond number, thereby sug-
gesting more unstable situations. These discrepancies raise an important question concerning
the role of the Coriolis forces in the process of rotating Hele–Shaw �ows. In order to clar-
ify and complete the in�uences of the Coriolis forces, a more mathematically correct model
[1] and order of magnitudes of the Coriolis forces in practical processes are applied in the
present study of miscible �ows. The outline of this paper is as follows. After the formulation
of the physical problem and review of the computational technique in Section 2, Section 3
focuses on the computational results and their interpretations. Conclusions are provided in
Section 4.
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2. PHYSICAL PROBLEM AND GOVERNING EQUATIONS

We study the interfacial dynamics of a heavier (density �h) and more viscous (viscosity �h)
droplet with initial diameter D0, which is surrounded by a miscible �uid with less density
and viscosity, denoted as �l and �l, respectively, in a rotating Hele–Shaw cell as shown in
Figure 1. A point source �ow with volume strength Q per unit depth is injected through the
centre of the cell. The e�ect of Taylor dispersion [11] is assumed signi�cant across the narrow
gap of the cell, thus averaging Hele–Shaw equations are applicable. The governing equations,
in a reference frame rotating with the cell, of continuity, momentum of the augmented Hele–
Shaw equations [1, 9] and concentration conservation take the forms

∇ · u = 0 (1)

∇p = −12
b2

�u+ �!̂2x+ 2�!̂ez × u (2)

@c
@t
+∇ · (uc) = D∇2c (3)

Here, u denotes the velocity vector, b the Hele–Shaw cell gap spacing, !̂ the angular speed,
x the position vector on x–y plane, ez the unit vector in z-direction, c the concentration of
lighter �uid, D the di�usion coe�cient and p the pressure. The viscosity is indicated by
�. In addition to the conventional viscous term on the right-hand side of the Hele–Shaw
equations (2), the extra second and third terms are the centrifugal forces and the Coriolis
forces, respectively. Any unconventional stresses, such as those interfacial stresses postulated
by Korteweg [12], are neglected. Even numerous studies that include the e�ects of Korteweg
stresses have been conducted [13–22], results are not yet conclusive regarding expressions and
magnitudes of the stresses. For now our goal is merely to evaluate the in�uences of Coriolis
forces.

Figure 1. Principal sketch. A more viscous miscible droplet, with an original dimen-
sionless radius of gyration Ro=0:5 and surrounded by a less viscous �uid, is placed

in a counter-clockwise rotating Hele–Shaw cell.
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In order to render the governing equations dimensionless, we take the diameter D0 of the
droplet and the density di�erence ��=�h − �l as the characteristic scales. Two time scales
are available at the present �ow �eld, i.e. the rotating time scale 1=!̂, which is used by Chen
and Wang [9, 10], and the scale 12�l=b2��!̂2 of centrifugal-induced time [1]. Since the simu-
lation is carried in the reference frame rotating with the cell, centrifugal-induced time is taken
as a characteristic time scale in the present study. By further scaling with viscosity �l and
pressure ��!̂2D02, a characteristic velocity scale b2��!̂2D0=12�l is obtained. For most mix-
tures, a linear density–concentration relationship represents a good approximation, and takes a
form as

�(c)= c�l + (1− c)�h (4)

For the dependence of viscosities on the concentration, an exponential relationship, which is
commonly used by previous studies [23, 24], are assumed as

�(c)=�leR(1−c); �h =�leR (5)

The dimensionless momentum and concentration equations are rewritten in terms of vorticity
(!) and streamfunction ( ), split into the potential component  pot and rotational part  rot,
formulation

u =
@ 
@y

; v= − @ 
@x

(6)

 =  pot +  rot (7)

∇2 rot = −! (8)

! = −R∇ · ∇c − 1
�

(
y
@c
@x

− x
@c
@y

)
− 2Re

�

(
u
@c
@x
+ v

@c
@y

)
(9)

@c
@t
+ u · ∇c =

1
Pe

∇2c (10)

�(c) = eR(1−c); R = −1
�
d�
dc

(11)

where u and v are the velocity components at x and y directions, respectively. The Peclet
number Pe and Reynolds number Re take the forms

Pe=
��!̂2b2D02

12�lD
; Re=

��!̂b2

12�l
(12)

The analytical distribution of potential radial velocity vpotr , induced by a point source, is
expressed as

vpotr =
I
r
; I =

6�lQ

�b2��!̂2D02
(13)

where I is the dimensionless injecting strength. There are four dimensionless control param-
eters presented, such as the Peclet number Pe which can be interpreted as the dimensionless
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rotating speed, the viscosity parameter R representing the viscosity contrast, and the Reynolds
number Re which includes the e�ect of the Coriolis forces, and the e�ects of injecting volume
by dimensionless injecting strength I . Here, focus is directed to the in�uences of the Coriolis
factor Re and their coupled e�ects on other parameters.
The boundary conditions are prescribed as follows:

x=±1 :  rot = 0; @c
@x
=0 (14)

y=±1 :  rot = 0; @c
@y
=0 (15)

In order to reproduce the very �ne structures of the �ngers successfully, the highly accu-
rate spectral method is applied. As a result, the actual boundary conditions applied in the
numerical codes at x= ± 1 are modi�ed as @ rot=@x=0. Under the present situation where
no concentration gradient is generated on these boundaries before the calculations terminated,
the above conditions automatically lead to  rot = 0. The initial conditions assume a circular
droplet shape bounded by a steep concentration gradient in a form of error function. In order
to break the unphysical arti�cial symmetry, a small magnitude of random noises is applied
to the positions of 0.5 concentration. Results of testing simulations demonstrate that very
insigni�cant in�uences of �ngering patterns by the magnitude of noises. To solve the stream-
function equation (8) by a pseudospectral method, a Galerkin-type discretization using cosine
expansion is employed in the streamwise direction both on !, and  . In the normal direction,
discretization is accomplished by sixth-order compact �nite di�erences. Vorticity equation (9)
is evaluated by sixth-order compact �nite di�erence schemes. A fully explicit third-order
Runge–Kutta procedure on time and spatial sixth-order compact �nite di�erence schemes are
employed to solve the concentration equation (10). The set of equations are then solved and
advanced in time. The numerical code is largely identical to the one used for earlier investi-
gations [9, 10, 23–25], and is quantitatively validated by comparing the growth rates with the
values obtained from the linear stability theory in a plane front [23–25]. In addition, the great
qualitative similarities of the �ngering features, reported in Chen and Wang [9, 10] as well
as the results presented in the following section, to the relevant immiscible experiments also
served as partial validation of the numerical schemes. More details on the implementation and
quantitative validation of these schemes are provided by Chen and Meiburg [23], Ruith and
Meiburg [24] and Meiburg and Chen [25].

3. RESULTS AND DISCUSSIONS

3.1. A rotating droplet

Representative calculations for R=2:5 and Pe=104 without additional injection I =0 are
�rstly described. The R-value indicates that the droplet is about 12 times more viscous than the
environmental �uid. In common spin-coating practices with a rotating frequency in the order
of thousands rpm, the equivalent Reynolds numbers of the Coriolis forces are in the magnitude
of O(1), which are considered in the following simulations. The e�ects of the Coriolis forces
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Figure 2. Pe=104, R=2:5 and I =0. Concentration �elds for: (a) Re=0 at t=15:5; and (b) Re=4
at t=20. Coriolis forces lead to slower-growing �ngers that reach the computational boundaries at a

much later time. Roots of �ngers at Re=4 appear thicker and more irregular.

are presented by di�erent simulations of various Re, as shown in Figure 2. Similarly to the
previous �ndings [9], very vigorous interfacial instability is triggered by the strong centrifugal
force in the case of zero-Coriolis forces, shown in Figure 2(a), even the mixing front of the
droplet is viscously stable. To conserve the mass, opposite �ngers of the less viscous �uid
penetrate toward the droplet origin. In the absence of the Coriolis forces, the radial �ngers
grow comparably in a straight outward trend and extend to the computational boundaries at
about t=15:5. The pattern of straight outward �ngers without apparent distortion toward the
rotational orientation is consistent with the experiments. Figure 2(b) displays the concentration
�eld at strong Coriolis forces of Re=4. The �ngers move outward much slower compared
to the previous non-Coriolis forces case, and they reach the computational boundaries at a
much later time, t=20. In addition, the roots of the �ngers appear thicker and more irregular.
The slimmer �ngers as well as the faster outward movements at a lower Reynolds number
indicate a stabilizing e�ect of the Coriolis forces. Similarly to immiscible situations, the e�ects
of stabilization can also be con�rmed by the growths in two characteristic quantities, such as
the mixing interfacial length L and the radius of gyration Ro. However, unlike the immiscible
case when a clear interface can be de�ned, the mixing region of miscible �uids is a layer.
No accurate interfacial length and radius of gyration can be measured. Nevertheless, in the
region of signi�cant concentration gradient, the mixing length can be well represented as

L(t)=
∫∫ ((

@c
@x

)2
+
(

@c
@y

)2)1=2
dx dy (16)

as well as the radius of gyration Ro obtained by calculating half distance between the values
of 0.99 averaging concentration across the y-direction, i.e. x1; x2 at ca=0:99 and

ca(x)=
∫

c(x; y) dy; Ro=
x2 − x1
2

(17)
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Figure 3. Pe=104, R=2:5 and I =0. Temporal evolution of interfacial length. More rapid growth of
Re=0 re�ects a more vigorous interfacial �ngering.
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Figure 4. Pe=104, R=2:5 and I =0. Temporal evolution of radius of gyration. Signi�cant growth of
radius is seen at a lower Reynolds number that represents stronger body distortion of droplet.

The growths of these two measurements are shown in Figures 3 and 4. The interfacial length
starts to increase once the �ngering instability is triggered, therefore an earlier growth and
higher growth rate of interfacial length re�ect a more unstable interface. In addition, the
occurrence of instability also leads to a longer radius of gyration. As a result, the interfacial
length is a good indication of the interfacial �ngerings, the radius of gyration could well
represent the body elongation of the droplet. Both these two characteristic quantities show
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Figure 5. Pe=104, R=2:5 and I =0. Contours of rotational streamfunction for: (a) Re=0 at t=15:5;
and (b) Re=4 at t=20. Numerous independent eddy pairs which result to formation of �ngers are ob-
served with absence of Coriolis forces. On the other hand, presence of Coriolis forces lead to connected

tangential streamlines and stabilized in�uences.

earlier and rapider growths that are attributed to less stable mixing interfaces at weaker Coriolis
forces. However, one should note that even though the growths of these two measurements
give a good judgment regarding the vigorousness of �ngerings, they might be only suitable for
the situations of high concentration gradients. As reasons stated above that miscible interfacial
length and radius of gyration are merely approximations by calculating their concentration
averages and gradients. This approximation might break down once the dispersion is strong
such as the regions of thin �ngers at later times. As shown in Figure 2(a), even the �ngers are
visually longer at Re=0, the insigni�cant concentration magnitude caused by stronger mixing
at the �nger tip region leads to underestimated interfacial length and radius. It explains the
line crosses of both interfacial length and radius of gyration for Re=0 and 1 at later time
period. The stabilized mechanism of Coriolis forces can be understood by the tangential shear
e�ects to the mixing interfaces. Rogerson and Meiburg [26] have found that tangential shear
stabilizes a plane mixing interface. In the present situation, the Coriolis forces are oriented
perpendicularly to both the rotating axis (z-direction) and the local velocity (radial-direction),
as expressed in Equation (2). A tangential shear results from the Coriolis forces, and stabilizes
the mixing interface. Figure 5shows the streamlines of rotational components for the cases
reported in Figure 2. Without the considerations of Coriolis forces (Re=0) as shown in
Figure 5(a), the rotational part of streamlines is on the formation of independent eddy pairs,
which each pair leads to the growth of a �nger. On the other hand, the presence of Coriolis
forces provides a tangential shear force, and results in a connected circumferential streamline
pattern. This tangential shear also delays the outward growth of �ngers by pulling their sides,
thereby leading to more irregular and thicker �nger roots. However, emission of little drops
on the �ngertip is not found for the highest Re simulated here.
The in�uences of Coriolis factors at di�erent rotating speeds and viscosity contrasts are

also simulated. Since the local Coriolis forces are proportional to the radial velocity, which is
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Figure 6. Pe=2:5×104, R=2:5 and I =0. Concentration �elds for: (a) Re=0 at t=12; and (b) Re=4
at t=16. Stabilizing e�ects of Coriolis forces are con�rmed at present higher rotating speed.

induced by the �ngering instability, the e�ects of the Coriolis forces are expected more sig-
ni�cantly at a higher Pe, which represents a stronger centrifugal force, and a lower viscosity
parameter R, which provides a weaker viscous damping. Figures 6(a) and (b) show the �n-
gering patterns for Re=0 and 4, respectively, at the higher rotating speed of Pe=2:5× 104.
When comparing the concentration images to their counterparts with lower rotating speeds
displayed in Figures 2(a) and (b), the �ngering instabilities are seen to be more enhanced
at the present higher Pe number, which con�rms the previous study [9]. In addition, induced
by a stronger rotating speed, the e�ects of the Coriolis forces are more pronounced in the
current situation in which an apparent trend of tangential pulling forces leads to more irregu-
lar �ngering developments, when compared to the straight outward growth at Re=0. Similar
in�uences of stabilization, indicated by a slower �ngering movement, as well as thicker �n-
ger roots result from the presence of the Coriolis forces. The results for a lower viscosity
contrast R=1, while the rest of the control parameters, kept identical to the representative
cases, are displayed in Figures 7(a) and (b). Similarly to the previous �ndings [9, 10], in
which more vigorous �ngerings are induced because of weaker viscous damping e�ects, the
overall instabilities are stronger compared to the reference cases in Figure 2. Induced by
stronger radial growths of �ngers, the stabilizing e�ects of Coriolis forces are even more sig-
ni�cant associated with identi�able counter-clockwise-orientated �ngers. The two quantitative
measurements, interfacial length and radius, also appear as slower developments at higher
Coriolis forces for both situations of higher rotating speed and lower viscosity contrast, which
con�rms the stabilizing e�ects of the Coriolis forces.

3.2. E�ects of injection

Focus is now directed to the �ows with injection. The common spin coating process, which
the layer of coating �uid keeps thinning and spreads outward, bears similarities to the injecting
situations. In the absence of the Coriolis forces, injection of a more viscous �uid provides
stronger viscous damping e�ects. Figures 8(a) and (b) show the �ngering patterns at injecting
strength I =0:01 with the rest of the parameters kept identical to the representative cases in
Figures 2(a) and (b). As mentioned previously, the magnitude of the local Coriolis forces is
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Figure 7. Pe=104, R=1 and I =0. Concentration �elds for: (a) Re=0 at t=6:4; and (b) Re=2 at
t=9:8. Overall instabilities are stronger compared to reference cases in Figure 2, due to weaker viscous
damping e�ects. Induced by stronger radial growths of �ngers, stabilized e�ects of Coriolis forces are

even more signi�cant when associated with identi�able counter-clockwise-orientated �ngers.
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Figure 8. Pe=104, R=2:5 and I =0:01. Concentration �elds for: (a) Re=0 at t=11; and (b) Re=4
at t=9:8. Overall �ngering instabilities appear visibly less vigorous at higher Coriolis parameter Re=4
with distinguished �ngering orientation of rotation. While nearly circular circumference of droplet
body is preserved at Re=0, displayed in Figure 7(a), stronger local Coriolis forces lead to clear
body distortion of droplet at Re=4. Similar �ngering features are observed on the immiscible spin

coating experiments [5] and simulations [8].

proportional to the local radial velocity and applies to the tangential direction; the additional
injection provides a greater increase in radial velocity and, therefore, signi�cant enhancement
of the Coriolis forces. The overall �ngering instabilities appear visibly less vigorous at the
higher Coriolis parameter Re=4 shown in Figure 8(b), compared to the Re=0 of Figure 8(a)
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Figure 9. Pe=104, R=2:5 and I =0:01 at various Coriolis factors. Temporal evolution of:
(a) interfacial length; and (b) radius of gyration. Except for radius of Re=4 at later stage,
fact of later developments and slower growths for both measurements, which imply stabi-
lized e�ects due to presence of Coriolis forces, is basically consistent with previous stud-
ies of zero-Coriolis forces. Inconsistency of rapid growth of radius for Re=4 at later stage

and earlier arrival to boundary are mainly caused by distortion of droplet body.

which is in line with the �ndings with no additional injection described earlier. It is interesting
to notice that a distinguished �ngering orientation of rotation results in �ngering 8(b). While
a nearly circular circumference of the droplet body is preserved in the zero-Coriolis forces
case displayed in Figure 8(a), stronger local Coriolis forces lead to a clear body distortion of
the droplet at Re=4 shown in Figure 8(b). Similar shape of body distortion is also observed
at the immiscible spin coating experiments [5] and simulations [8]. The distortion of the main
body of the droplet at stronger Coriolis forces results in an earlier arrival of the heavier �uid
to the computational domain, t=9:8 for Re=4, compared with t=11 for Re=0, which is
inconsistent with the �ndings in non-injection situations. The quantitative measurements from
normalized mixing interfacial length (Ln) and radius of gyration (Ron), normalized by the
expanding rate caused by the injection strength I , such as

Ln(t)=
L(t)

2�
√
2It + 1=4

; Ron(t)=
Ro(t)√
2It + 1=4

(18)

are plotted in Figures 9(a) and (b). Except for the radius of Re=4 at the later stage, the
fact of later developments and slower growths for both measurements, which imply stabilized
e�ects due to the presence of Coriolis forces, is basically consistent with the previous studies
of zero-Coriolis forces. The inconsistency of the rapid growth of the radius for Re=4 at the
later stage and the earlier arrival to the boundary are mainly caused by the distortion of the
droplet body. As mentioned previously, the representation of interfacial length is to determine
circumferential instability, the growth of the radius of gyration represents the distortion of the
droplet body. While the very strong tangential Coriolis forces prevent the vigorous growth
of circumferential �ngerings, thereby leading to less growth in interfacial length, as depicted
in Figure 9(a), in the meantime the main body of the droplet is distorted by the signi�cant
Coriolis forces and results in a faster growth of the radius, as displayed in Figure 9(b). The
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Figure 10. Pe=104, R=2:5 and I =0:05. Concentration �elds for: (a) Re=0 at t=6:2; and
(b) Re=4 at t=6:4. E�ect of body distortion is apparent even at present higher injecting
rate. Enhanced viscous stabilization by stronger injection leads to no apparent �ngering for
both cases. However, compared to almost circular body shape at Re=0, distortion toward

rotating orientation is even more signi�cant at Re=4.

e�ect of body distortion is even apparent at a higher injecting rate, shown in Figure 10 with an
injection of I =0:05. The enhanced viscous stabilization by the stronger injection leads to no
apparent �ngering in both cases, as expected. However, compared to the almost circular body
shape at zero-Coriolis forces in Figure 10(a), the distortion toward the rotating orientation is
even more signi�cant, as in Figure 10(b), due to the very signi�cant Coriolis forces induced
by stronger injection. These results suggest two main in�uences of the Coriolis forces. The
Coriolis forces provide a stabilized tangential shear that suppresses the development of radial
�ngers on the circumference, which has also been con�rmed by the previous no-injection
cases. On the other hand, the su�cient strong Coriolis forces might also lead to a di�erent
kind of interfacial instability or distortion of the main body of the droplet. These two opposite
e�ects can even be clearly identi�ed by the simulations of smaller viscosity contrast R=1,
which would induce stronger local Coriolis forces, and I =0:05, as shown in Figure 11(a) for
Re=0 and 11(b) for Re=2. Very vigorous circumferential �ngerings occur at zero-Coriolis
forces, while signi�cant droplet distortion with emission of drops on the �ngertip, for which
the pattern is quite similar to the immiscible simulations [1], results in the present case of
very strong Coriolis forces. These two di�erent e�ects lead to the opposite developments of
interfacial length in Figure 12(a), and radius in Figure 12(b). Later and smaller growth of
interfacial length is found at Re=0, while the growth of the radius is observed to be earlier
and higher at Re=2. As a result, the e�ects of the Coriolis forces on a rotating interface are
mixed and should be cautiously described.
These �ndings can be analogized to the available immiscible experiments and simulations,

thereby resulting in a better explanation for the partial inconsistency mentioned in Section 1.
Both the current studies and the immiscible simulations [1] lead to a rotating orientation
�ngering pattern with breaking droplets on the �ngertips in cases of very stronger Coriolis
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Figure 11. Pe=104, R=1 and I =0:05. Concentration �elds for: (a) Re=0 at t=3:5; and (b) Re=2
at t=2:9. Very vigorous circumferential �ngerings occur at Re=0, while signi�cant droplet distortion

with emission of drops on �ngertips result in very strong Coriolis forces at Re=2.
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Figure 12. Pe=104, R=1 and I =0:05 at various Coriolis factors. Temporal evolution of:
(a) interfacial length; and (b) radius of gyration. Inconsistent evolutions of interfacial length
and radius are observed. Later and smaller growth of interfacial length is found at Re=0,

while growth of radius is observed to be earlier and higher at Re=2.

e�ects, such as the low viscosity contrast at high Coriolis factors. Even the emission of break-
ing droplets is also observed in the experiments [3], however, the phenomena of a rotating
orientation �ngering pattern is neither seen in immiscible Hele–Shaw experiments [2–4] nor
spin coating experiments [7]. These discrepancies might be attributed to the insu�cient mag-
nitude of local Coriolis forces. As mentioned earlier, stronger Coriolis forces are not merely
induced by the larger magnitudes of the Coriolis factor Re but also by the lower viscosity con-
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trast that a�ects local radial velocity. While experiments [2–4] are conducted in relative low
speed frequencies of O(102), viscosity contrasts in the experiments of practical spin-coating
processes [7] are very signi�cant even the rotating speeds of O(103), and thus generating
weak local Coriolis forces. As a result, signi�cant rotating �ngering orientation does not oc-
cur in the experiments mentioned. Nevertheless, the su�cient Coriolis forces induced by the
injection cause the droplet distortion and accelerate the growths of the radius of gyration.
When considering the determination of stabilities in the spinning coating experiments [7] that
are based mainly on the break in the circular shape, or the critical radius, the injection gives
a more unstable judgment.

4. CONCLUSIONS

Numerical simulations of interfacial stabilities for miscible interfaces in a rotating Hele–Shaw
cell by means of highly accurate numerical schemes have been presented. The centrifugal
force, if the central �uid is heavier and in general more viscous, provides an unstable out-
ward driving force, while the viscous e�ect tends to stabilize the contacting front. Since the
orientation of the Coriolis forces apply tangentially to the droplet circumference, the e�ects of
the Coriolis forces are found to have two major in�uences on the interfaces, the stabilization
of circumferential �ngerings and the body distortion of the droplet, which can be represented
by two characteristic measurements, the interfacial length and the radius of gyration. In the
Coriolis factors simulated, on the basis of practical magnitudes of the experiments, without
additional injection the e�ect of stabilization of �ngering instabilities is much more signi�cant,
compared to the body distortion on a rotating droplet. The miscible interface is found to be
more stable, both on the conventional judgments of growth in interfacial length and radius
of gyration at higher Coriolis factors. However, for stronger local Coriolis forces enhanced
by additional injecting radial velocity, the body distortion is visible, while the interfacial
�ngerings are suppressed. With an additional injection, the occurrences of signi�cant body
distortion at higher Coriolis factors lead to inconsistent developments in the two characteristic
measurements. The stabilized e�ect of interfacial �ngering delays and weakens the growth of
interfacial length at higher Coriolis factor. Faster and greater growth in the radius of gyration
is observed because of the signi�cant body distortion. As a result, the e�ects of the Coriolis
forces on the miscible interfaces should be addressed with great caution.
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